DATA SCIENCE INTERVIEW EXTRA - Home Teachers India

Breaking

Welcome to Home Teachers India

The Passion for Learning needs no Boundaries

Translate

Monday, 5 December 2022

DATA SCIENCE INTERVIEW EXTRA

 

DATA SCIENCE INTERVIEW EXTRA

epending on the firm and sector, data science interview practices might differ. They usually begin with a phone interview with the recruiting manager, followed by more onsite interviews. You'll be asked technical and behavioral data science interview questions, and you'll almost certainly have to complete a skills-related project. Before each interview, you should examine  your CV and  portfolio  and prepare       for                possible     interview

questions.

Data science interview questions will put your knowledge and abilities in statistics, programming, mathematics, and data modelling to the test. Employers will consider your technical and soft talents, as well as how well you might fit into their organization.

If you prepare some typical data science interview questions and responses, you can confidently go into the interview. During your data science interview, you may anticipate being asked different kinds of data scientist questions.

Extra Interview Questions

Employers are searching for well-versed applicants in data science ideas and practices. Depending on the profession and abilities necessary, data- related interview questions will differ.

Here are a few extra interview questions and responses:

1.   What is the distinction between deep learning and machine learning?

2.   Give a detailed explanation of the Decision Tree algorithm.


3.   What exactly is sampling? How many different sampling techniques are you familiar with?

4.   What is the distinction between a type I and a type II error?

5.    What is the definition of linear regression? What are the definitions of the words p-value, coefficient, and r-squared value? What are the functions of each of these elements?

6.   What is statistical interaction?

7.   What is selection bias?

8.   What does a data set with a non-Gaussian distribution look like?

9.   What is the Binomial Probability Formula, and how does it work?

10.   What distinguishes k-NN clustering from k-means clustering?

11.  What steps would you take to build a logistic regression model?

12.   Explain the 80/20 rule and its significance in model validation.

13.    Explain the concepts of accuracy and recall. What is their relationship to the ROC curve?

14.   Distinguish between the L1 and L2 regularization approaches.

15.   What is root cause analysis, and how does it work?

16.   What is hash table collisions?

17.      Before implementing machine learning algorithms, what are some procedures for data wrangling and cleaning?

18.   What is the difference between a histogram and a box plot?

19.   What is cross-validation, and how does it work?

20.   Define the terms "false-positive" and "false-negative." Is it preferable to have a large number of false positives or a large number of false negatives?


21.     In your opinion, which is essential, model performance or accuracy, when constructing a machine learning model?

22.    What are some examples of scenarios in which a general linear model fails?

23.    Do you believe that 50 little decision trees are preferable to a single huge one? Why?

Interview Questions on Technical Abilities

In a data science interview, technical skills questions are used to assess your data science knowledge, skills, and abilities. These questions will be connected to the Data Scientist's unique work duties.

You should demonstrate your thought process and clearly explain how you arrived at a solution when addressing issues.

The following are some examples of technical data science interview questions:

1.   What are the most important data scientist tools and technical skills?

Because data science is such a sophisticated profession, you'll want to demonstrate to the hiring manager that you're familiar with all of the most up-to-date industry-standard tools, software, and programming languages. Data scientists typically use R and Python among the different statistical programming languages used in data research. Both may be used for statistical tasks, including building a nonlinear or linear model, regression analysis, statistical testing, data mining, and so on. RStudio Server is another essential data science application, whereas Jupyter Notebook is frequently used for statistical modelling, data visualizations, and machine learning functions, among other things. Tableau, PowerBI, Bokeh, Plotly, and Infogram are just a few of the dedicated data visualization tools that Data Scientists use frequently. Data scientists must also have a lot of SQL and Excel skills.

“Any specific equipment or technical skills required for the position you're interviewing for should also be included in your response. Examine the job description, and if there are any tools or applications you haven't used


before, it's a good idea to familiarize yourself with them before the interview.”

2.   How should outlier values be treated?

Outliers can be eliminated in some cases. You can remove garbage values or values that you know aren't true. Outliers with extreme values that differ significantly from the rest of the data points in a collection can also be deleted. Suppose you can't get rid of outliers. In that case, you may rethink whether you choose the proper model, employ methods (such random forests) that aren't as affected by outlier values, or attempt normalizing your data.

Extras

3.   Tell me about a unique algorithm you came up with.

4.    What are some of the advantages and disadvantages of your preferred statistics software?

5.   Describe a data science project where you had to work with a lot of code. What did you take away from the experience?

6.   How would you use five dimensions to portray data properly?

7.   Assume using multiple regression to create a predictive model. Describe how you plan to test this model.

9.   How do you know that your modifications are better than doing nothing while updating an algorithm?

10.    What would you do if you had an unbalanced data set for prediction (i.e., many more negative classes than positive classes)?

11.      How would you validate a model you constructed using multiple regression to produce a predictive model of a quantitative outcome variable?

12.   I have two equivalent models of accuracy and processing power. Which one should I use for production, and why should I do so?


13.   You've been handed a data set with variables that have more than 30% missing values. What are your plans for dealing with them?

Interview on Personal Concerns

Employers will likely ask generic questions to get to know you better, in addition to assessing your data science knowledge and abilities. These questions will allow them to learn more about your work ethic, personality, and how you could fit into their business culture.

Here are some personal Data Scientist questions that can be asked:

1.     What qualities do you believe a competent Data Scientist should possess?

Your response to this question will reveal a lot about how you view your position and the value you offer to a company to a hiring manager. In your response, you might discuss how data science necessitates a unique set of competencies and skills. A skilled Data Scientist must be able to combine technical skills like parsing data and creating models with business sense like understanding the challenges they're dealing with and recognizing actionable insights in their data. You might also include a Data Scientist you like in your response, whether it's a colleague you know or an influential industry figure.

Extras

2.   Tell me more about yourself.

3.   What are some of your strengths and weaknesses?

4.   Which data scientist do you aspire to be the most like?

5.   What attracted you to data science in the first place?

6.   What unique skills do you believe you can provide to the team?

7.   What made you leave your last job?

8.   What sort of compensation/pay do you expect?


9.   Give a few instances of data science best practices.

10.    What data science project at our organization would you want to work on?

11.  Do you like to work alone or in a group of Data Scientists?

12.   In five years, where do you see yourself?

13.   How do you deal with tense situations?

14.   What inspires and motivates you?

15.   What criteria do you use to determine success?

16.   What kind of work atmosphere do you want to be in?

17.   What do you enjoy doing outside of data science?

Interview Questions on Communication and Leadership

Data scientists need to be able to lead and communicate effectively. Employers prize applicants who can take the initiative, share their knowledge with colleagues, and articulate data science goals and plans.

Here are some examples of data science interview questions for leadership and communication:

1.      Tell me about a time when you were a multi-disciplinary team member.

A Data Scientist works with a diverse group of people in technical and non- technical capacities. Working with developers, designers, product experts, data analysts, sales and marketing teams, and top-level executives, not to mention clients, is not unusual for a Data Scientist. So, in your response to this question, show that you're a team player who enjoys the opportunity to meet and interact with people from other departments. Choose a scenario in which you reported to the company's highest-ranking officials to demonstrate not just that you can communicate with anybody but also how important your data-driven insights have been in the past.


Extras

2.   Could you tell me about a moment when you used your leadership skills on the job?

3.   What steps do you use to resolve a conflict?

4.   What method do you like to use to establish rapport with others?

5.    Discuss a successful presentation you delivered and why you believe it went well.

6.   How would you communicate a complex technical issue to a colleague or client who is less technical?

7.    Describe a situation in which you had to be cautious when discussing sensitive information. How did you pull it off?

8.    On a scale of 1 to 10, how good are your communication skills? Give instances of situations that prove the rating is correct.

Behavioral Interview Questions

Employers use behavioral interview questions to seek specific circumstances that demonstrate distinct talents. The interviewer wants to know how you handled previous circumstances, what you learned, and what you can add to their organization.

In a data science interview, behavioral questions could include:

1.    Tell me about a moment when you were tasked with cleaning and organizing a large data collection.

According to studies, Data Scientists spend most of their time on data preparation rather than data mining or modelling. As a result, if you've worked as a Data Scientist before, you've almost certainly cleaned and organized a large data collection. It's also true that this is a job that just a few individuals like. However, data cleaning is one of the most crucial processes. As a result, you should walk the hiring manager through your data preparation process, including deleting duplicate observations,


correcting structural problems, filtering outliers, dealing with missing data, and validating data.

Extras

2.    Tell me about a data project you worked on and met a difficulty. What was your reaction?

3.    Have you gone above and beyond your normal responsibilities? If so, how would you go about doing it?

4.   Tell me about a period when you were unsuccessful and what you learned from it.

5.      How have you used data to improve a customer's or stakeholder's experience?

6.   Give me an example of a goal you've attained and how you got there.

7.   Give an example of a goal you didn't achieve and how you dealt with it.

8.   What strategies did you use to meet a tight deadline?

9.   Tell me about an instance when you successfully settled a disagreement.

Interview Questions Top Companies

I collected data science interview questions from some of the biggest IT firms to give you an idea of what you could be asked in an interview.

1.      What's the difference between support vector machines and logistic regression? What is an example of when you would choose to use one over the other?

2.   What is the integral representation of a ROC area under the curve?

3.   A disc is spinning on a spindle, and you don’t know which direction the disc is spinning. A set of pins is given to you. How will you utilize the pins to show how the disc is spinning?


3.    What would you do if you discovered that eliminating missing values from a dataset resulted in bias?

4.      What metrics would you consider when addressing queries about a product's health, growth, or engagement?

5.    When attempting to address business difficulties with our product, what metrics would you consider?

6.   How would you know whether a product is performing well or not?

7.   What is the best way to tell if a new observation is an outlier? What is the difference between a bias-variance trade-off?

8.   Discuss how to randomly choose a sample of a product's users.

9.    Before using machine learning algorithms, explain the data wrangling and cleaning methods.

10.   How would you deal with a binary classification that isn't balanced?

11.  What makes a good data visualization different from a bad one?

12.   What's the best way to find percentiles? Write the code for it.

13.   Make a function that determines whether a word is a palindrome.


 

 

 

CONCLUSION

B

 
eing a data scientist is steadily becoming a popular job; many data scientist jobs are now available worldwide and grow significantly every year. According to Harvard Business Review, it’s the sexiest job of the twenty-first century”, and the expanding employment trend in the field

seems to back up that claim.

The data scientist interview process may be quite wide and complicated. Because your job might cover a wide range of topics (depending on the organization you work for), the questions you will be asked during an interview will be rather varied. For instance, you may be asked questions on statistics, SQL, and machine learning in an interview, as well as questions about coding, algebra, and programming.

In this interview guide, I examined a database of genuine interview questions from real firms that we have amassed over time. These questions were used to examine what a corporate interview entails, and I have gone through all of the pertinent questions and provided solutions.

Like other professional interviews, data science interviews need a lot of planning. To guarantee that you are prepared for back-to-back questions on statistics, programming, and machine learning, you must master a variety of disciplines.

Firms perform different sorts of data science interviews. Some data science interviews are heavily focused on products and metrics. These interviews focus primarily on product topics; such as what metrics you would use to illustrate where a product may be improved. These are frequently used in conjunction with SQL and Python questions. Another form of data science interview combines programming and machine learning.

If you are unsure about the sort of interview you will have, I recommend asking the recruiter. Some organizations excel at maintaining consistency in interviews, but even then, teams might vary based on what they are looking


for. Seek opinions, ask questions, and cover as much as possible to secure that position. Good Luck!!

No comments:

Post a Comment

Thank you for Contacting Us.

Post Top Ad